2,4,5-TRIETHOXYAMPHETAMINE

SYNTHESIS: A solution of 13.3 g 3,4-diethoxyphenol (see the recipe for MEE for its preparation) in 20 mL MeOH, and a solution of 4.8 g KOH in 100 mL hot MeOH were combined. There was added 8.2 g ethyl bromide and the mixture was held at reflux on the steam bath for 2 h. The reaction was quenched by the addition of three volumes H2O, made strongly basic by the addition of 10% NaOH, and extracted with 3×150 mL CH2Cl2. The solvent was removed from the pooled extracts under vacuum giving a residue of 9.1 g 1,2,4-triethoxybenzene that solidified to a crystalline mass. The mp was 28.5-29.5 °C, but the infra-red analysis showed the presence of unreacted phenol. The CH2Cl2 solution was again washed thoroughly with 10% NaOH and, after removal of the solvent, the solidified residue weighed 6.0 g and appeared free of impurities. The mp of this sample was 33-34 °C.
To a mixture of 10.5 g N-methyl formanilide and 11.9 g POCl3 that had incubated at room temperature for 0.5 h (it had become quite red in color) there was added 6.4 g of the solid ether, 1,2,4-triethoxybenzene. The mixture was heated on the steam bath for 2.5 h, then poured into 500 mL of shaved ice. After a few minutes stirring, crystals appeared. The reaction was allowed to stand for a few h, then filtered and sucked as dry as possible. The damp 14.4 g of slate-green crude solids were dissolved in 30 mL boiling MeOH, and allowed to cool to room temperature overnight. Filtration of the cream-colored product, and air drying, gave 6.1 g of 2,4,5-triethoxybenzaldehyde with a mp of 94-95 °C. A solution containing 0.5 g of this aldehyde and 0.4 g malononitrile in 7 mL absolute EtOH was treated with three drops of triethylamine. There was an immediate formation of granular yellow crystals of 2,4,5-triethoxybenzalmalononitrile which, on filtering and air drying, weighed 0.4 g and had a mp of 169-170 °C.

A solution of 5.0 g 2,4,5-triethoxybenzaldehyde and 2.6 g nitroethane in 14.8 g glacial acetic acid was treated with 1.6 g anhydrous ammonium acetate and heated on the steam bath for 2 h. The addition of an equal volume of H2O gave a slightly turbid solution which, upon the administration of a small amount of externally developed seed, smoothly set up as orange crystals as the reaction mix returned to room temperature. The product was removed by filtration, washed with a little 50% acetic acid, and allowed to air dry to constant weight. There was thus obtained 2.5 g of fluffy yellow-orange (almost yellow) crystals of 2-nitro-1-(2,4,5-triethoxyphenyl)propene with a mp of 91-92.5 °C. Anal. (C15H21NO5) C,H.

To a gently refluxing suspension of 1.7 g LAH in 200 mL anhydrous Et2O under a He atmosphere, there was added 2.5 g 2-nitro-1-(2,4,5-triethoxyphenyl)propene by allowing the condensing Et2O to drip into a shunted Soxhlet thimble containing the nitrostyrene, thus effectively adding a warm saturated solution of the nitrostyrene dropwise. Refluxing was maintained for 5 h, and then the reaction mixture was cooled with an external ice bath. The excess hydride was destroyed by the cautious addition of 300 mL 1.5 N H2SO4. When the aqueous and Et2O layers were finally clear, they were separated, and 50 g of potassium sodium tartrate were dissolved in the aqueous fraction. Aqueous NaOH was then added until the pH was above 9, and this was extracted with 3×200 mL CH2Cl2. Removal of the solvent under vacuum produced an amber oil that was dissolved in anhydrous Et2O and saturated with anhydrous HCl gas. After a few min delay, there com-menced the separation of fine white crystals of 2,4,5-triethoxyamphetamine hydro-chloride, (EEE). These weighed, after filtration, Et2O washing, and air drying to constant weight, 1.75 g and had a mp of 167-168 °C, with prior softening at 162 °C. Anal. (C15H26ClNO3) C,H,N.

DOSAGE: unknown.

DURATION: unknown.

EXTENSIONS AND COMMENTARY: This amphetamine, the final item on the ethoxy homologue of TMA-2 project, has never been tried in man. I do not know how it tastes, but I suspect that it is probably bitter. An interesting sidelight concerning this project, and one which can serve as a measure of the enthusiasm that went into it, is that (except for the 2-ethoxy homologue EMM) all of the possible ethoxy homologues of TMA-2, including MEM, MME, EEM, EME, MEE and EEE, their precursor nitrostyrenes, the precursor aldehydes (and their malononitrile derivatives), the precursor ethers, and the precursor phenols, for a total of 33 compounds, were all synthesized, purified, and characterized within a period of just over three weeks. Actually it was 23 days, and that was a magically exciting time.

And there were two true treasures that came out of it all. The compound MEM, and the knowledge that the 4-position was where the action is.

Leave a Reply

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.